2 00 7 Manifolds admitting a G̃ 2 - structure

نویسنده

  • Hông-Vân Lê
چکیده

We find a necessary and sufficient condition for a compact 7-manifold to admit a G̃2-structure. As a result we find a sufficient condition for an open 7-manifold to admit a closed 3-form of G̃2-type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 M ay 2 00 7 Nonorientable 3 - manifolds admitting coloured triangulations with at most 30 tetrahedra ∗

We present the census of all non-orientable, closed, connected 3-manifolds admitting a rigid crystallization with at most 30 vertices. In order to obtain the above result, we generate, manipulate and compare, by suitable computer procedures, all rigid nonbipartite crystallizations up to 30 vertices. 2000 Mathematics Subject Classification: 57Q15, 57M15, 57N10.

متن کامل

J un 2 00 6 KÄHLER MANIFOLDS ADMITTING A FLAT COMPLEX CONFORMAL CONNECTION

We prove that any Kähler manifold admitting a flat complex conformal connection is a Bochner-Kähler manifold with special scalar distribution and zero geometric constants. Applying the local structural theorem for such manifolds we obtain a complete description of the Kähler manifolds under consideration.

متن کامل

On a Nonlinear Dirac Equation of Yamabe Type

We show a conformal spectral estimate for the Dirac operator on a non-conformally-flat Riemannian spin manifolds of dimension n ≥ 7. The estimate is a spinorial analogue to an estimate by Aubin which solved the Yamabe problem for the above manifolds. Using Hijazi’s inequality our estimate implies Aubin’s estimate. More exactly, let M be a compact manifold of dimension n ≥ 7 equipped with a Riem...

متن کامل

A ug 2 00 1 Symplectic genus , minimal genus and diffeomorphisms

In this paper, the symplectic genus for any 2−dimensional class in a 4−manifold admitting a symplectic structure is introduced, and its relation with the minimal genus is studied. It is used to describe which classes in rational and irrational ruled manifolds are realized by connected symplectic surfaces. In particular, we completely determine which classes with square at least −1 in such manif...

متن کامل

Metric transformations under collapsing of Riemannian manifolds

Gromov-Hausdorff convergence is an important tool in comparison Riemannian geometry. Given a sequence of Riemannian manifolds of dimension n with Ricci curvature bounded from below, Gromov’s precompactness theorem says that a subsequence will converge in the pointed Gromov-Hausdorff topology to a length space [G-99, Section 5A]. If the sequence has bounded sectional curvature, then the limit wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009